

SCREENING OF PROBIOTIC BACTERIA FOR THE FERMENTATION OF GOAT'S MILK

Muelas, R.; Monllor, P.; Martí-De Olives, A.; Romero, G.; Díaz, J.R.; Sendra*, E.

Departamento de Tecnología Agroalimentaria. Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche. Ctra. Beniel Km 3.2, 03312, Orihuela, Alicante. *Presenting author: esther.sendra@umh.es

A proper choice of starter cultures for fermented milks may enhance their functional properties. In this scenario, the objective of this study was to evaluate ten cultures, including mixed cultures and individual probiotic lactic acid bacteria, for the fermentation of Murciano-Granadina goat's milk.

 Bulk milk from the UMH experimental goat herd
Pasteurization at 80°C

Pasteurization at 80°C during 30 min

Milk fermentation with ten cultures

<u>MICROBIOLOGICAL ANALYSIS, pH AND</u> <u>DRAINING OF WHEY (48h after fermentation ended)</u>

Microbial counts in fermented milk

Gel stabilty by draining of whey assessment

Microorgonicm/culturo	Bact.count	/Qh n⊔	Draining (%)			
microorganism/culture	(Log ₁₀ cfu/g)	4оп рп				
<i>Lactobacilllus casei</i> CECT 475	8.54±0.41 ^{bcd}	4.59±0.36 ^{abc}	67.88±8.74 ^{ab}			
<i>Lactobacillus curvatus</i> CECT 5786	9.11±0.25 ^{cd}	4.33±0.27 ^{ab}	62.67±4.06 ^{ab}			
<i>Lactobacillus delbrueckii subsp. bulgaricus</i> CECT 4005	5.60±0.47ª	4.24±0.14ª	66.75±1.69 ^{ab}			
<i>Lactobacillus helveticus</i> CECT 541	7.77±0.77 ^b	4.20±0.12ª	60.90±2.49ª			
Lactococcus lactis subsp. Lactis CECT 4042	9.47±0.35 ^d	4.10±0.03ª	64.82±2.66 ^{ab}			
<i>Lactobacillus paracasei subsp. paracasei</i> CECT 277	9.56±0.22 ^d	4.35±0.06 ^{ab}	63.83±2.95 ^{ab}			
Lactobacillus plantarum CECT 5785	$8.74{\pm}0.20^{\text{bcd}}$	4.79±0.18 ^{bc}	63.28±2.79 ^{ab}			
<i>Lactobacillus reuteri</i> CECT 925	8.19±1.48 ^{bc}	4.95±0.36 ^c	69.33±5.47 ^b			
<i>Lactobacillus sakei subsp. carnosus</i> CECT 5964	8.99±0.58 ^{cd}	4.21±0.18ª	66.71±1.57 ^{ab}			
MA-400 ¹	9.42±0.32 ^d	4.49±0.08 ^{abc}	67.80±1.11 ^{ab}			
SL ²	***	***	*			

Orihuel

¹Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris,Lactococcus lactis subsp. lactis biovar diacetylactis, Streptococcus thermophiles ²Significance level: ****P* < 0.001; **P* < 0.05 ^{a,b,c,d}Means within a column with different superscripts differ

EXTRACTION, SEPARATION AND ANALYSIS OF FATTY ACIDS

ANÁLISIS ESTADÍSTICOS

3

- Extraction of milk fat: Method Romeu-Nadal et al. (2004).
- Methylation of fatty acids: Method Trigueros et al. (2015)
- Analysis fatty acid with GC-FID, Shimadzu GC-17A

One way ANOVA (SPSS 24, IBM): factor starter culture. Four replicate experiments were run on consecutive milking days. All determinations were run in duplicate.

RESULTS

Regarding microbial populations, all cultures reached counts over 6 log CFU/g, Lactobacillus helveticus CECT 541 and Lactobacillus dekbrueckii sb. bulgaricus CECT 4005 showed the lowest counts. Table 2. Means (± SD) of Saturated, Monounsaturated, Polyunsaturated fattyacids (SFA, MUFA, PUFA) and total Conjugated Linoleic Acid (CLA) of milk andfermented milk (percentage of total fatty acids).

Microorganism/culture	SFA	MUFA	PUFA	CLA
Milk	64.23±1.05	30.12±1.20	5.65±0.18	1.31±0.08
<i>Lactobacilllus casei</i> CECT 475	64.46±0.96	29.75±1.06	5.79±0.18	1.34±0.11
<i>Lactobacillus curvatus</i> CECT 5786	64.47±0.88	29.68±0.97	5.84±0.18	1.37±0.07
Lactobacillus delbrueckii subsp. bulgaricus				
CECT 4005	64.37±0.84	29.66±0.99	5.80±0.18	1.36±0.07
Lactobacillus helveticus CECT 541	64.19±0.69	29.94±0.72	5.74±0.09	1.33±0.04
<i>Lactococcus lactis subsp. Lactis</i> CECT 4042	64.06±0.90	30.15±0.89	5.79±0.15	1.38±0.09
Lactobacillus paracasei subsp. paracasei				
CECT 277	64.66±0.81	26.53±5.22	8.80±6.01	1.35±0.06

Regarding gel stability, measured as the percentage of syneresis after centrifugation, no differences were detected among fermented milks and values ranged from 65 to 70 %.

CLA content slightly increased due to fermentation, with no differences due to the used culture so it could not be a decisive factor to select the culture.

Lactobacillus plantarum CECT 5785	64.49±0.81	29.73±0.97	5.78±0.17	1.36±0.07
<i>Lactobacillus reuteri</i> CECT 925	64.84±0.61	29.39±0.73	5.77±0.13	1.38±0.06
<i>Lactobacillus sakei subsp. carnosus</i> CECT				
5964	64.40±1.09	29.75±1.11	5.84±0.20	1.37±0.05
MA-400	65.32±0.24	29.64±1.33	4.95±1.64	1.35±0.11

<u>CONCLUSIONS</u>

Most stable fermented milks were those obtained by fermentation with *L. lactis* CECT 4042 *and L. paracasei* CECT 277, as they presented highest microbial counts and good acidification rates. Further research is still needed in order to assess relevant characteristics of fermented milks as volatile profile and fermentation characteristics.

Funded by Ministerio de Economía y Competitividad y el Fondo Europeo de Desarrollo Regional AGL2015-64518, MINECO/FEDER, UE